
Improving Scalbility in Metadata and 
Small File Accesses

Walt Ligon
walt@clemson.edu



 2

Areas of Investigation

• Problem focus
– Metadata Operations (Create, Remove, Stat)
– Small Files
– Unaligned Accesses
– Structured I/O

• Approaches
– Server-to-server communication
– Collective metadata ops
– Middleware based caching



 3

Research Thrusts

• Brad Settlemyer (PhD '09)
– HECIOS simulator
– Validation experiments
– Study of middleware-based cache

• Yang Wu (MS '09)
– Study of distributed directories

• Additional Projects



 4

Middleware Caching

• Improves locality
– PVFS Acache and Ncache
– Improve write-read and read-read accesses

• Small accesses
– Can bundle small accesses into a single large 

operation
• Alignment

– Can compress accesses by performing aligned 
requests

• Transparent to application programmer



 5

Proposed Parallel Software Stack

File Cache
Middleware

High-Level Numeric Library

System Software/Operating System

Parallel File System Client

Message Passing Library

Application Code



 6

Middleware Caching Study

• Tuning experiments
• Benefit of shared multi-core cache?
• Benefit of different cache organizations?

– Fixed-page data cache
– Progressive page cache
– File view-aware aggregation

• Simulation-based study: HECIOS
• Argonne MPI I/O Test

– Bandwidth test reading/writing 16MB common file
• Flash I/O benchmark

– Many small, unaligned file writes



 7

HECIOS Overview

HECIOS System Architecture



 8

Validation/Tuning Experiments

• Simulator designed to track PVFS 
performance

• Validation Experiments
– Ping latency
– File system bandwidth
– Flash I/O (a small write benchmark)
– Case study with metadata operations

• Myrinet/switch modeling discrepancies



 9

Validation Bandwidth Results

• Argonne I/O Benchmark (higher is better)
• 32 CPUN, 8PPN, Gigabit Ethernet

Write Bandwidth Read Bandwidth



 10

Validation Results

• FLASH I/O Benchmark (lower is better)
• 64 CPUN, 8PPN, Gigabit Ethernet



Implementation – Modeling (cont.)

 Create Directory Entry Processing Time



 12

Fixed-size Page Caching

• Benefits of paged caching
– Extracts fixed-size update structure from 

codes that do not write data with structure
– Efficient for the file system
– Low cache metadata overhead

• Issues with paged caching
– Poorly aligned page sizes may reduce 

performance
– Must read page for partial page writes



 13

Baseline Cache Performance

• Flash I/O Benchmark
• 8 CPUN, 1PPN, 4ION, Gigabit Ethernet
• Includes large write bypassing



 14

Leveraging Request Data Types

• Flash I/O Benchmark
• 8 CPUN, 1PPN, 4ION, Gigabit Ethernet
• Includes large write bypassing



 15

Multi-core Cache Performance

• Flash I/O Benchmark
• 1 CPUN, 8 PPN, 4 ION, Gigabit Ethernet
• Includes large write bypassing



 16

Shared Cache Performance

• Flash I/O Benchmark
• 1 CPUN, 8PPN, 4ION, Gigabit Ethernet
• Includes large write bypassing



 17

Large Scale Cache Performance

• Flash I/O Benchmark
• 128 CPUN, 8PPN, Gigabit Ethernet
• Shared fixed-size page cache



 18

Progressive Page Caching

• Eliminates performance penalties 
associated with false sharing avoidance

• Simpler cache concept
• Significant cache metadata management 

overhead
– Dirty mask – fixed overhead
– File Region Tree – dynamic overhead



 19

Baseline Cache Performance

• Flash I/O Benchmark
• 8 CPUN, 1PPN, 4ION
• Includes large write bypassing



 20

Large Scale Cache Performance

• Flash I/O Benchmark
• 64 CPUN, 8PPN, Gigabit Ethernet
• Shared progressive page cache



 21

File View Aware Aggregation

• MPI provides a more descriptive facility for 
describing file I/O
– Collective I/O
– MPI provides file views for describing file sub-regions 

• Use file views as a mechanism for coalescing 
reads and writes during collective I/O

• How to take the union of multiple views.
– Heuristic approach to detect cyclic I/O patterns
– Allow user to provide own union code



 22

View Aware Aggregation Results

• MPI Tile I/O Benchmark (lower is better)
• 64 CPUN, 8PPN, Gigabit Ethernet

Write Bandwidth Read Bandwidth



Distributed Directory Study

• Distribute directory entries across servers
• P2S Map & Extensible Hashing
• Client Lookup
• Directory Splitting
• Request Forward & Response
• Directory Traversal



Extensible hashing

 Example:



Experimental Results

 Throughput – Pre-distribution



Experimental Results

 Throughput – Dynamically Splitting



 27

Additional Development Projects

• Tree-based metadata operations
• Mirror-on-immutable
• Security prototype

– Capability based
– Timeouts/Revocations
– Interface with various authentication sources

• SSD for metadata
• Lookup by attribute value



 28

Projects still to come

• More simulations with distributed directory
• Prototype implementation of middleware 

cache
• Settlemyer at ORNL

– larger simulations
• Would like ...

– more disk models
– more network models


